28 research outputs found

    Rapid inversion: running animals and robots swing like a pendulum under ledges.

    Get PDF
    Escaping from predators often demands that animals rapidly negotiate complex environments. The smallest animals attain relatively fast speeds with high frequency leg cycling, wing flapping or body undulations, but absolute speeds are slow compared to larger animals. Instead, small animals benefit from the advantages of enhanced maneuverability in part due to scaling. Here, we report a novel behavior in small, legged runners that may facilitate their escape by disappearance from predators. We video recorded cockroaches and geckos rapidly running up an incline toward a ledge, digitized their motion and created a simple model to generalize the behavior. Both species ran rapidly at 12-15 body lengths-per-second toward the ledge without braking, dove off the ledge, attached their feet by claws like a grappling hook, and used a pendulum-like motion that can exceed one meter-per-second to swing around to an inverted position under the ledge, out of sight. We discovered geckos in Southeast Asia can execute this escape behavior in the field. Quantification of these acrobatic behaviors provides biological inspiration toward the design of small, highly mobile search-and-rescue robots that can assist us during natural and human-made disasters. We report the first steps toward this new capability in a small, hexapedal robot

    A Systemic Approach to Consider Complexity in Sawmill Modeling

    Get PDF
    The lumber industry is challenged to operate more efficiently. Sawmill systems use much equipment with various technologies and their management methods are very much influenced by size of operation, employee skills, hierarchy levels, and the high volatility of softwood lumber commodity markets. Because of interactions between the different manufacturing system components, its management becomes a complex matter. It is therefore difficult to assess the effect of given perturbations or improvements on the overall system.This study proposes a modeling approach based on the concept of system that provides a comprehensive view for modeling and analyzing sawmill systems. Adaptations of existing formalisms to represent operating, information, and decision sub-systems are put forward, while assembling these three sub-systems in an overall model gives a new vision of the sawmill and a powerful tool for systems integration. This modeling approach could be used for diagnostic as well as for sawmill improvement. Various examples are provided on the application of this approach

    A Systemic Approach for Sawmill Modeling

    Get PDF
    To illustrate how to perform sawmill modeling through the systemic approach, an independent sawmill and a sawmill integrated to a pulp complex were selected and modeled. Applications of a methodology for modeling the operation, information, and decision subsystems are presented. Comprehensive diagrams assembling the different subsystems for both sawmills are built.The fitness of this approach for the diagnosis of integration problems is shown. Examples of integration problems between production and administrative information systems, as well as organizational aspects of integration, are discussed. The systemic models appear to be useful tools to share a common vision of the organization and its mission
    corecore